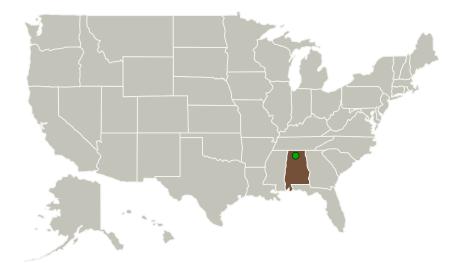
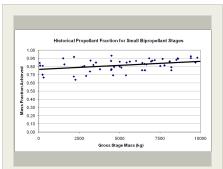
Small Business Innovation Research/Small Business Tech Transfer

Solid Rocket Motor for Ultralow Temperature Operation During the Mars Sample Return Mission, Phase I




Completed Technology Project (2013 - 2013)

Project Introduction

A small Mars (or other celestial body) ascent vehicle is unlikely to achieve the necessary propellant fraction required to achieve orbit. Scaling down of liquid propulsion systems, as shown in the figure, is difficult. In the 100-kg class of vehicles, liquid propellant vehicle designers should expect a propellant fraction of only 0.75. In contrast, solid rocket motors (SRM) scale down much easier, so designers should expect a propellant fraction of at least 0.92. To be practical, however, the SRM must operate in extreme low temperature environments, which is difficult for state of the art polybutadiene binders. ASI proposes to develop a new, low temperature binder based upon siloxane. Siloxane polymers have glass transition temperatures below 150K, making them ideal for use on Mars with little or no external heaters required. A siloxane binder SRM-based MAV will easily achieve the propellant fraction needed for a sample return mission.

Primary U.S. Work Locations and Key Partners

Solid Rocket Motor for Ultralow Temperature Operation During the Mars Sample Return Mission

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Solid Rocket Motor for Ultralow Temperature Operation During the Mars Sample Return Mission, Phase I

Completed Technology Project (2013 - 2013)

Organizations Performing Work	Role	Туре	Location
Analytical Services, Inc.(ASI)	Lead Organization	Industry Small Disadvantaged Business (SDB)	Huntsville, Alabama
Marshall Space Flight Center(MSFC)	Supporting Organization	NASA Center	Huntsville, Alabama

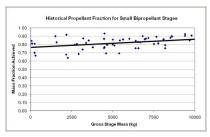
Primary U.S. Work Locations

Alabama

Project Transitions

0

May 2013: Project Start



November 2013: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/138517)

Images

Project Image

Solid Rocket Motor for Ultralow Temperature Operation During the Mars Sample Return Mission (https://techport.nasa.gov/imag e/130492)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Analytical Services, Inc. (ASI)

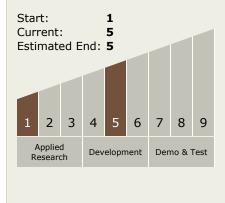
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Robert Askins

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Solid Rocket Motor for Ultralow Temperature Operation During the Mars Sample Return Mission, Phase I

Completed Technology Project (2013 - 2013)

Technology Areas

Primary:

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

